$\left[\mathrm{Zr}\left(\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}\right)\left(\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}\right]$

Zrl-N4	2.423 (5)	Zri01-N104	2.387 (5)
Zrl-N5	2.390 (5)	Zr101-N105	2.409 (5)
$\mathrm{N} 1-\mathrm{Zrl}-\mathrm{N} 2$	101.7 (2)	N101-Zr101-N102	100.5 (2)
$\mathrm{N} 1-\mathrm{Zrl}-\mathrm{N} 3$	117.0 (2)	N101-Zr101-N103	118.0 (2)
$\mathrm{N} 2-\mathrm{Zrl}-\mathrm{N} 3$	$141.2(2)$	N102-Zr101-N103	141.4 (2)
$\mathrm{N} 1-\mathrm{Zrl}-\mathrm{N} 4$	100.6 (2)	N101-Zr101-N104	101.7 (2)
$\mathrm{N} 2-\mathrm{Zrl}-\mathrm{N} 4$	87.7 (2)	N102-Zr101-N104	87.9 (2)
N3-Zrl-N4	83.5 (2)	N103-Zr101-N104	82.3 (2)
$\mathrm{N} 1-\mathrm{Zrl}-\mathrm{N} 5$	100.7 (2)	N101-Zr101-N105	104.9 (2)
$\mathrm{N} 2-\mathrm{Zrl}-\mathrm{N} 5$	87.2 (2)	N102-Zr101-N105	86.2 (2)
$\mathrm{N} 3-\mathrm{Zrl}-\mathrm{N} 5$	87.7 (2)	N103-Zr101-N105	86.3 (2)
N4-Zrl-N5	158.7 (2)	N104-Zr101-N105	153.4 (2)

The ortho-, meta- and para-C atoms of one of the 2,6-diisopropylamide ligands of Zr 101 were found to be disordered over two sites as indicated by examination of their anisotropic displacement parameters in the final stages of structure refinement; half-occupancy isotropic atoms were refined. Suitable restraints were applied to the displacement parameters and to the $\mathrm{C}-\mathrm{C}$ distances both between the two ring fragments and within the two rings. No attempt was made to model two sites for the two ortho-isopropyl group substituents or the ipso-C atom.
Data collection: STADI4 (Stoe \& Cie, 1995a). Cell refinement: STADI4. Data reduction: XRED (Stoe \& Cie, 1995b). Program(s) used to solve structure: SIR92 (Altomare et al., 1994). Program(s) used to refine structure: CRYSTALS (Watkin, Prout, Carruthers \& Betteridge, 1996). Molecular graphics: CAMERON (Watkin, Prout \& Pearce, 1996). Software used to prepare material for publication: CRYSTALS.

The authors thank the Royal Society (London) for a Postdoctoral Fellowship (to GIN) and the EPSRC for the provision of a diffractometer.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: CF1159). Services for accessing these data are described at the back of the journal.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435436.

Arney, D. J., Bruck, M. A., Huber, S. R. \& Wigley, D. E. (1992). Inorg. Chem. 31, 3749-3755.
Blake, A. J., Mountford, P., Nikonov, G. I. \& Swallow, D. (1996). Chem. Commun. pp. 1835-1836.
Cosier, J. \& Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Profilet, R. D., Zambrano, C. H., Fanwick, P. E., Nash, J. J. \& Rothwell, I. P. (1990). Inorg. Chem. 29, 4363-4366.
Stoe \& Cie (1995a). STADI4. Data Collection Program for Windows. Version 1.04. Stoe \& Cie, Darmstadt, Germany.
Stoe \& Cie (1995b). XRED. Data Reduction Program for Window's. Version 1.04. Stoe \& Cie, Darmstadt, Germany.
Walsh, P. J., Hollander, F. J. \& Bergman, R. G. (1988). J. Am. Chem. Soc. 110, 8729-8730.
Watkin, D. J., Prout, C. K., Carruthers, R. J. \& Betteridge, P. (1996). CRYSTALS. Issue 10. Chemical Crystallography Laboratory, University of Oxford, England.
Watkin, D. J., Prout, C. K. \& Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.
Wigley, D. E. (1994). Prog. Inorg. Chem. 42, 239-482.
© 1997 International Union of Crystallography
Printed in Great Britain - all rights reserved

Acta Cryst. (1997). C53, 876-879

μ-Bromo- μ-cyclohexylphosphido-bis(tetracarbonylmanganese) and μ-Bromo- μ -(pentacarbonylmanganese)phosphido-bis(tetracarbonylmanganese) \dagger

Ulrich Flörke and Hans-JÜrgen Haupt

Anorganische und Analytische Chemie, Universität-GH Paderborn, Warburgerstraße 100, D-33098 Paderborn, Germany. E-mail: floe@mvaxac.uni-paderborn.de
(Received 25 June 1996; accepted 27 January 1997)

Abstract

The central molecular fragment of the first title complex, $\left[\mathrm{Mn}_{2} \mathrm{Br}\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{P}\right)(\mathrm{CO})_{8}\right]$, is a four-membered non-planar $\mathrm{Mn}_{2} \mathrm{BrP}$ ring with a cyclohexyl ring and a H atom attached to the bridging P atom. In the related second title complex, $\left[\mathrm{Mn}_{3} \mathrm{Br}(\mathrm{PH})(\mathrm{CO})_{13}\right]$, the cyclohexyl ligand is substituted by an $\mathrm{Mn}(\mathrm{CO})_{5}$ group which displays an unusual ecliptic arrangement with the axial carbonyl ligands of the ring Mn atoms.

Comment

There exist few structural characterizations of dinuclear metal carbonyl complexes with one phosphido and one halogeno bridging group as the central molecular fragment $M M^{\prime}(\mu-X)(\mu-\mathrm{P})(X=$ halogen $)$. Most of the complexes comprise a direct metal-metal bond and show butterfly-like structures (e.g. Taylor, Mott \& Carty, 1980; Fischer \& Vahrenkamp, 1981; Geoffroy, Rosenberg, Herlinger \& Rheingold, 1986; Jungbluth, Stöckli-Evans \& Süss-Fink, 1989). A nearly planar arrangement of the $M M^{\prime}(\mu-X)(\mu-\mathrm{P})$ core as well as a non-bonding metal-metal separation are found in the complexes $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{2} \mathrm{Mo}(\mu-\mathrm{I})\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Mn}(\mathrm{CO})_{4}\right]$ (Horton, Mays, Adatia, Henrick \& McPartlin, 1988) and $\left[\mathrm{Ph}_{3} \mathrm{P}(\mathrm{CO})_{3} \operatorname{Re}(\mu-\mathrm{I})\left(\mu-\mathrm{PPh}_{2}\right) \operatorname{Re}(\mathrm{CO})_{4}\right]$ (Flörke \& Haupt, 1991). The recent work (Flörke, 1996) on [(CO) $4 \mathrm{Mn}(\mu-$ $\left.\mathrm{Br})\left(\mu-\mathrm{PH}_{2}\right) \mathrm{Mn}(\mathrm{CO})_{4}\right]$, hereafter referred to as (III), was the first X-ray structure determination of a corresponding dimanganese complex with the bridging ligand $X=$ Br .

We present here the two related title structures, $\left[(\mathrm{CO})_{4} \mathrm{Mn}(\mu-\mathrm{Br})\left\{\mu-\mathrm{PH}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)\right\} \mathrm{Mn}(\mathrm{CO})_{4}\right]$, (I), and $\left[(\mathrm{CO})_{4} \mathrm{Mn}(\mu-\mathrm{Br})\left\{\mu-\mathrm{PH}\left[\mathrm{Mn}(\mathrm{CO})_{5}\right]\right\} \mathrm{Mn}(\mathrm{CO})_{4}\right]$, (II), which may be derived formally from (III) by substitution of one H atom attached to the μ - P atom by a cyclohexyl ligand or an $\mathrm{Mn}(\mathrm{CO})_{5}$ group, respectively. In both complexes, each Mn atom is approximately octahedrally

[^0]coordinated by four carbonyl groups and the bridging bromo and phosphido ligands. Both octahedra share a common edge along the $\mathrm{P} \cdots \mathrm{Br}$ vector. Thus, each molecule achieves C_{s} symmetry with a non-crystallographic mirror plane passing through both bridging atoms. The axial carbonyl groups show an ecliptic arrangement at the metal atoms. They are tilted 4.8 and 0.6° around the $\mathrm{Mn} \cdots \mathrm{Mn}$ vector for (I) and (II), respectively.

(I)

(II)

The $\mathrm{Mn}-\mathrm{Br}$ bond lengths of both complexes are equal within experimental error, with an average value of 2.548 (1) for (I) and 2.545 (1) \AA for (II). They are somewhat shorter than the corresponding length of 2.606 (5) \AA in complex (III). The Mn-P bond lengths in (I), with an average value of 2.370 (2) \AA, are shorter than the corresponding endocyclic distances for (II), with an average of $2.410(1) \AA$, which is due to the different monovalent cyclohexyl and $\mathrm{Mn}(\mathrm{CO})_{5}$ substituents, respectively. The average $\mathrm{Mn}-\mathrm{C}$ bond lengths of carbonyl groups 1 and 5 for (I) [1.798 (6) Å] and 2 and 5 for (II) [1.789 (4) \AA], which are trans to the μ - Br ligands, are shorter than the other $\mathrm{Mn}-\mathrm{C}$ bonds [1.851 (6) and 1.850 (5) \AA, respectively]. Similar effects of shortened $M-\mathrm{C}$ bonds trans to bridging-halogen ligands are known from the literature (Lal De, 1983; Taylor et al., 1980; Geoffroy et al., 1986, and references therein).

The long $\mathrm{Mn} \cdots \mathrm{Mn}$ distances of 3.702 (1) in (I) and 3.737 (1) \AA in (II) are non-bonding, as expected on the basis of the 18 valence-electron rulc. They are comparable to the metal-metal separations of 3.717 in (III) and $3.703 \AA$ in $\left[(\mathrm{CO})_{4} \mathrm{Mn}\left(\mu-\mathrm{PH}_{2}\right)_{2} \mathrm{Mn}(\mathrm{CO})_{4}\right]$ (Deppisch, Schäfer, Binder \& Leske, 1984).
The endocyclic ring angles for (I) and (II) are almost equal with $\mathrm{Mn}-\mathrm{P}-\mathrm{Mn} 102.68$ (6) and 101.64 (4) $)^{\circ}$, $\mathrm{Mn}-\mathrm{Br}-\mathrm{Mn} 93.21$ (4) and 94.48 (3) ${ }^{\circ}$, and average $\mathrm{P}-\mathrm{Mn}-\mathrm{Br} 81.92$ (5) and $81.59(3)^{\circ}$, respectively. The values for (III), in the same order, are 106.4 (2), 90.9 (1) and $81.3(3)^{\circ}$. The corresponding $\mathrm{Mn}_{2} \mathrm{PBr}$ rings of both title complexes are not planar but folded with $\mathrm{PBrMn} / \mathrm{MnBrP}$ dihedral angles of 5.4 (I) and 8.4° (II).

Accordingly, for (I), the axial carbonyl ligands 3 and 7 on the cyclohexyl side show a non-bonding intramolecular $\mathrm{O} 3 \cdots \mathrm{O}$ distance of $3.638(6) \AA$, whereas the trans positioned carbonyl ligands 4 and 8 , which face the H atom ligand, are only 3.310 (6) \AA apart. In the symmetrically P -substituted complex (III), the separations of the axial carbonyl groups are roughly equal ($\mathrm{O} \cdots \mathrm{O} 3.57$ and $3.48 \AA$). For complex (II), however, the

Fig. 1. The molecular structure of (I) with H atoms omitted. Displacement ellipsoids are plotted at the 50% probability level.

Fig. 2. The molecular structure of (II) with the H atom omitted. Displacement ellipsoids are plotted at the 50% probability level.
$\mathrm{O} 1 \cdots \mathrm{O} 7$ separation on the hydrogen side $[3.800(5) \AA$ A $]$ is much larger than that for $\mathrm{O} 3 \cdots \mathrm{O} 6[3.351(5) \AA$] on the $\mathrm{Mn}(\mathrm{CO})_{5}$ side. This is accompanied by the unexpected arrangement of the $\mathrm{Mn}(\mathrm{CO})_{5}$ group which shows an ecliptic arangement of its carbonyl ligands with respect to the already mentioned axial carbonyl ligands. This gives rise to somewhat short intramolecular distances which include the axial carbonyl ligands [O6 \cdots O12 3.111 (6) and O3 \cdots O10 3.135 (5) A], as well as the equatorial groups 2 and 5 with an average $\mathrm{O} \cdots \mathrm{O}$ distance of 3.184 (6) A to the carbonyl groups 9 to 12. This observed ecliptic arrangement of the carbonyl ligands is unusual and all examples of related complexes with a terminal $M(\mathrm{CO})_{5}$ group attached to a $\mu_{2}-\mathrm{P}$ atom
documented so far show the $\mathrm{Mn}(\mathrm{CO})_{5}$ group rotated about the $\mu-\mathrm{P}-\mathrm{M}$ bond by about 45° to give a staggered arrangement of the carbonyl ligands (Huttner, Mohr, Friedrich \& Schmid, 1978; Ajulu, Hitchcock, Mathey \& Nixon, 1993; Flörke \& Haupt, 1995).

Intermolecular contacts shorter than the sum of van der Waals radii are valid only for the packing of (I), with $\mathrm{C} 15-\mathrm{H} 15 \mathrm{~A} \cdots \mathrm{Br} 2.89 \AA$ (corrected for $\mathrm{C}-\mathrm{H}=$ $1.08 \AA$).

Experimental

Complex (I) was obtained as a by-product from the reaction of $\left[\mathrm{Mn}_{2}(\mu-\mathrm{H})\left\{\mu-\mathrm{PH}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)\right\}\right]$ with the non-nucleophilic base DBU (1,8-diazabicyclo[5.4.0]undec-7-ene) and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}$ in THF solution at 298 K . For complex (II), $\left[\mathrm{Mn}_{2}(\mu-\mathrm{Br})(\mu-\right.$ $\left.\mathrm{PH}_{2}\right)(\mathrm{CO})_{8}$] (Schäfer, 1978) was reacted with $\mathrm{BrMn}(\mathrm{CO})_{5}$ in THF solution at 195 K . The solution was then allowed to reach room temperature and after 3 h the solvent was vacuum stripped. Complex (II) was then recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /pentane solution.

Compound (I)

Crystal data
$\left[\mathrm{Mn}_{2} \mathrm{Br}\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{P}\right)(\mathrm{CO})_{8}\right]$
$M_{r}=529.0$
Monoclinic
$P 2_{1} / n$
$a=9.933(2) \AA$
$b=17.111$ (3) \AA
$c=12.076(2) \AA$
$\beta=108.21(2)^{\circ}$
$V=1949.7(6) \AA^{3}$
$Z=4$
$D_{x}=1.802 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Siemens R3 diffractometer $\omega-2 \theta$ scans
Absorption correction:
ψ scans (North, Phillips
\& Mathews, 1968)
$T_{\text {min }}=0.461, T_{\text {max }}=0.500$
4650 measured reflections 4450 independent reflections 2319 reflections with
$I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.0448$
$w R\left(F^{2}\right)=0.0994$
$S=1.032$
4448 reflections
239 parameters
H atoms riding, except Hl
coordinates refined
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0294 P)^{2}\right.$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 30 reflections
$\theta=7.5-17.0^{\circ}$
$\mu=3.463 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism
$0.41 \times 0.22 \times 0.20 \mathrm{~mm}$
Orange
$R_{\text {int }}=0.036$
$\theta_{\text {max }}=27.56^{\circ}$
$h=-12 \rightarrow 12$
$k=0 \rightarrow 22$
$l=0 \rightarrow 15$
3 standard refiections every 400 reflections intensity decay: insignificant
$(\Delta / \sigma)_{\text {max }}=-0.001$
$\Delta \rho_{\text {max }}=0.381 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.363 \mathrm{e}^{\AA^{-3}}$
Extinction correction: SHELXL
Extinction coefficient: 0.00026 (14)

Scattering factors from International Tables for Crystallography (Vol. C)

Table 1. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$ for (I)

$\mathrm{Brl}-\mathrm{Mn} 2$	2.5459 (12)	$\mathrm{Mn} 1-\mathrm{Pl}$	2.370 (2)
$\mathrm{Brl}-\mathrm{Mnl}$	2.5495 (10)	$\mathrm{Mn} 2-\mathrm{C} 5$	1.798 (5)
$\mathrm{Mnl}-\mathrm{Cl}$	1.798 (6)	$\mathrm{Mn} 2-\mathrm{C} 6$	1.849 (6)
$\mathrm{MnI}-\mathrm{C} 2$	1.829 (6)	$\mathrm{Mn} 2-\mathrm{C} 8$	1.861 (6)
$\mathrm{Mn} 1-\mathrm{C} 4$	1.850 (6)	$\mathrm{Mn} 2-\mathrm{C} 7$	1.863 (6)
$\mathrm{Mn} 1-\mathrm{C} 3$	1.853 (6)	$\mathrm{Mn} 2-\mathrm{Pl}$	2.371 (2)
$\mathrm{Mn} 2-\mathrm{Brl}-\mathrm{Mnl}$	93.21 (4)	$\mathrm{Pl}-\mathrm{Mn} 2-\mathrm{Brl}$	81.94 (4)
$\mathrm{Pl}-\mathrm{Mnl}-\mathrm{Br} 1$	81.89 (5)	$\mathrm{Mn} 1-\mathrm{Pl}-\mathrm{Mn} 2$	102.68 (6)

Compound (II)

Crystal data
$\left[\mathrm{Mn}_{3} \mathrm{Br}(\mathrm{PH})(\mathrm{CO})_{13}\right]$
$M_{r}=640.84$
Triclinic
$P \overline{1}$
$a=8.735(2) \AA$
$b=8.953$ (1) \AA
$c=13.837(4) \AA$
$\alpha=81.57$ (2) $^{\circ}$
$\beta=84.59(2)^{\circ}$
$\gamma=74.68(2)^{\circ}$
$V=1030.6(4) \AA^{3}$
$Z=2$
$D_{x}=2.065 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Siemens $R 3 m$ diffractometer $\omega-2 \theta$ scans
Absorption correction:
ψ scans (North, Phillips
\& Mathews, 1968)
$T_{\text {min }}=0.486, T_{\text {max }}=0.652$
4984 measured reflections
4760 independent reflections
3612 reflections with
$I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.0398$
$w R\left(F^{2}\right)=0.0951$
$S=1.018$
4760 reflections
285 parameters
All H atoms refined
$w=1 /\left[\sigma^{2}\left(F_{O}^{2}\right)+(0.0466 P)^{2}\right.$
$+0.2887 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 25
reflections
$\theta=7-17^{\circ}$
$\mu=3.889 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism
$0.37 \times 0.20 \times 0.11 \mathrm{~mm}$
Red
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.488 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.696 \mathrm{e}^{-3}$
Extinction correction: SHELXL
Extinction coefficient: 0.0037 (6)

Scattering factors from International Tables for Crystallography (Vol. C)
$R_{\text {int }}=0.041$
$\theta_{\text {max }}=27.56^{\circ}$
$h=-11 \rightarrow 11$
$k=-11 \rightarrow 11$
$l=0 \rightarrow 18$
4 standard reflections
every 400 reflections
intensity decay:
insignificant
124.11 (4)

Table 2. Selected geometric parameters $\left(\AA^{\circ}\right)$ for (II)

$\mathrm{Brl}-\mathrm{Mn} 1$	$2.5439(9)$	$\mathrm{Mn} 2-\mathrm{C} 5$	$1.786(4)$
$\mathrm{Brl}-\mathrm{Mn} 2$	$2.5457(9)$	$\mathrm{Mn} 2-\mathrm{C} 8$	$1.825(4)$
$\mathrm{Mnl}-\mathrm{C} 2$	$1.792(4)$	$\mathrm{Mn} 2-\mathrm{C} 6$	$1.855(5)$
$\mathrm{Mnl}-\mathrm{C} 4$	$1.845(4)$	$\mathrm{Mn} 2-\mathrm{C} 7$	$1.855(4)$
$\mathrm{Mnl}-\mathrm{C} 3$	$1.859(4)$	$\mathrm{Mn} 2-\mathrm{Pl}$	$2.4113(12)$
$\mathrm{Mnl}-\mathrm{Cl}$	$1.860(4)$	$\mathrm{Mn} 3-\mathrm{Pl}$	$2.4505(12)$
$\mathrm{Mnl}-\mathrm{Pl}$	$2.4092(11)$		
$\mathrm{Mnl-Brl-Mn2}$	$94.48(3)$	$\mathrm{Mn} 1-\mathrm{Pl}-\mathrm{Mn} 2$	$101.64(4)$
$\mathrm{Pl}-\mathrm{Mnl}-\mathrm{Br} 1$	$81.62(3)$	$\mathrm{Mn} 1-\mathrm{Pl}-\mathrm{Mn} 3$	$123.66(4)$
$\mathrm{Pl}-\mathrm{Mn2}-\mathrm{Br} 1$	$81.55(3)$	$\mathrm{Mn} 2-\mathrm{Pl}-\mathrm{Mn} 3$	$124.11(4)$

Table 2. Selected geometric parameters ($\AA,^{\circ}$) for (II)

For both compounds, program(s) used to solve structures: SHELXTL (Siemens, 1995); program(s) used to refine structures: SHELXTL.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: KA1213). Services for accessing these data are described at the back of the journal.

References

Ajulu, F. A., Hitchcock, P. B., Mathey, F. \& Nixon, J. F. (1993). J. Organomet. Chem. 444, C60-61.
Deppisch, B., Schäfer, H., Binder, D. \& Leske, W. (1984). Z. Anorg. Allg. Chem. 519, 53-66.
Fischer, K. \& Vahrenkamp, H. (1981). Z. Anorg. Allg. Chem. 475, 109-115.
Flörke, U. (1996). Z. Kristallogr. 211, 908-910.
Flörke, U. \& Haupt. H.-J. (1991). Acta Cryst. C47, 1093-1094.
Flörke, U. \& Haupt, H.-J. (1995). Acta Cryst. C51, 1776-1778.
Geoffroy, G. L., Rosenberg, S., Herlinger, A. W. \& Rheingold, A. L. (1986). Inorg. Chem. 25, 2916-2919.

Horton, A. D., Mays, M. J., Adatia, T., Henrick, K. \& McPartlin, M. (1988). J. Chem. Soc. Dalton Trans. pp. 1683-1688.

Huttner, G., Mohr, G., Friedrich, P. \& Schmid, H. G. (1978). J. Organomet. Chem. 160, 59-66.
Jungbluth, H., Stöckli-Evans, H. \& Süss-Fink, G. (1989). J. Organomet. Chem. 377, 339-346.
Lal De, R. (1983). J. Organomet. Chem. 243, 331-337.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Schäfer, H. (1978). Z. Naturforsch. Teil B, 33, 351-352.
Siemens (1995). SHELXTL. Version 5. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Taylor, N. J., Mott, G. N. \& Carty, A. J. (1980). Inorg. Chem. 19, 560-562.

Acta Cryst. (1997). C53, 879-881

Layered Tetramethylammonium Vanadium Oxide $\left[\mathbf{N}\left(\mathbf{C H}_{3}\right)_{4}\right] V_{3} \mathbf{O}_{7}$ by X-ray Rietveld Refinement

Peter Y. Zavalu, Thomas Chirayt and M. Stanley Whitingham

Materials Research Center, State University of New York at Binghamton, Binghamton, NY 13902-6016, USA. E-mail: zavalij@binghamton.edu
(Received 15 October 1996; accepted 13 January 1997)

Abstract

Tetramethylammonium trivanadium heptaoxide crystallizes in the monoclinic space group $P 2_{1} / n$ when prepared hydrothermally. Its structure was solved from conventional X-ray powder diffraction with final $R(\mathrm{Bragg})=$ 0.052 and R (prof) $=0.078$. Vanadium coordination polyhedra arc square pyramids and a tetrahedron which

form layers parallel to the $b c$ plane. The tetramethylammonium cations are incorporated between the layers.

Comment

Recently, using mild hydrothermal synthesis (Whittingham et al., 1995), we have produced metastable vanadium oxides with the vanadium in a reduced oxidation state: $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right] \mathrm{V}_{4} \mathrm{O}_{10}$ (Zavalij, Whittingham, Boylan, Pecharsky \& Jacobson, 1996), $\mathrm{Li}_{x} \mathrm{~V}_{2-y} \mathrm{O}_{4-y} \cdot \mathrm{H}_{2} \mathrm{O}$ (Chirayil, Zavalij \& Whittingham, $1996 a$) and $\mathrm{Li}_{x} \mathrm{~V}_{2-y} \mathrm{O}_{4-y}$ (Chirayil, Zavalij \& Whittingham, 1996b) with open frameworks, as well as a cluster compound $\left\{\left[\mathrm{Li}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]_{2} \mathrm{~V}_{10} \mathrm{O}_{28} .4 \mathrm{H}_{2} \mathrm{O}\right\}^{4-}$ (Zavalij, Chirayil, Whittingham, Pecharsky \& Jacobson, 1997) with vanadium in the highest oxidation state. We report here the structure of a new layered vanadium oxide $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right] \mathrm{V}_{3} \mathrm{O}_{7}$, (I).

(I)

Two V atoms have square-pyramidal (SP) coordination with double-bonded O atoms in the vertex, while a third V atom has a tetrahedral coordination. The square pyramids form a VO_{3} chain along the b axis by sharing the two edges of their base (Fig. 1). The middle square pyramid (V1) shares two opposite edges of the base and the corner pyramid (V2) shares two neighbor-

Fig. 1. $\mathrm{V}_{3} \mathrm{O}_{7}$ layer shown by square pyramids (middle, V 1 ; corner, V2) and tetrahedra (V3).

[^0]: \dagger Alternative names: μ-bromo-octacarbonyl-1 $\kappa^{4} C, 2 \kappa^{4} C$ - μ-cyclohexyl-phosphanido-1:2 $\kappa^{2} P$-dimanganese and μ-bromo-1:2 $\kappa^{2} \mathrm{Br}$-tridecacar-bonyl-1 $\kappa^{4} C, 2 \kappa^{4} C, 3 \kappa^{5} C-\mu_{3}$-phosphanido-1:2:3 $\kappa^{3} P$-trimanganese.

